Introduction
- Underground localization in mining situations is very important for worker safety, and methods like GPS do not work as GPS cannot penetrate through the ground.
- A system was designed using RFID tags hung on the walls of the mine, a wearable antenna, and a receiver antenna & processor.
- Our goal was to refine this design, and my portion was to design a 915 MHz monopole antenna with a highly directional pattern.
- We went through several iterations (see below) using HFSS and CEMS:
 - Dipole with and without a tuning inductor
 - A monopole with a cylindrical reflector
 - A monopole with varying sizes of corner reflector

Simulation Results
- We looked at three main parameters: S_{11}, Realized Gain, and main beam width.
- We optimized several parameters of our final design, including reflector height (H), angle (Θ), and distance of the monopole from from reflector apex (S).

Optimized Design & Results
- We found that a monopole with a corner reflector generated the most ideal results:
 - Resonance: 875 MHz – 1 GHz
 - S_{11} at 915 MHz ≤ -14dB
 - Maximum Realized Gain: 7.9 dB
 - Beam Width in XY Plane: 14.93 Degrees

Conclusion
- Future work for this project involves optimizing the design to have a significantly smaller footprint.
- Fabrication of the antenna and measurement in the anechoic chamber
- Integration of the antenna with the other components of the localization system.

Acknowledgements
- The Authors would like to thank Robert Jones for his help with running the simulations.

References