Comparing Printed and Milled Patch Antenna at 10GHz

Kenneth Hora, Atef Elsherbeni
khora@mines.edu, aelsherb@mines.edu
Electrical Engineering Department
Colorado School of Mines, Golden, CO 80401, USA

Introduction
- Conformal (Flexible) antenna have many useful applications in chipless RFID, health monitoring sensors, and placing antenna on curved surfaces
- A microstrip line-fed patch antenna was designed for 10GHz operation and fabricated using two different methods: milling and printing
- The design was simulated using the FDTD software package, CEMS
- The milled antenna was created on 1.6mm thick FR4 with 1oz copper using an LPKF ProtoMat
- The printed antenna was created on 125 μm thick Kapton in silver nanoparticle ink. It was then attached to a 1.6mm thick, single-sided piece of FR4 to serve as a substrate and a ground plane
- The reflection coefficient S_{11} was measured for the simulated, milled, and printed antennas.

Simulation Results
- Simulated S_{11} of the antenna showed that the antenna was most resonant at 10GHz:
 - -10dB is considered matched
 - >-20dB is ideal
- The simulation assumed the following properties (top):
 - $\varepsilon_r=4.4$
 - 1.6mm thick FR4
- Parameters were redetermined based off milled antenna measurements (bottom):
 - $\varepsilon_r=-4.15$
 - 1.45mm thick FR4

Measurement Results
- S_{11} Measured of all antenna
 - Left to Right: milled, printed
- Milled Antenna best resonance at 10.3 GHz
- Printed Antenna has S_{11} of-8.9 dB at 10GHz
- Printed Antenna poorly matched compared to simulated or milled antenna
- Printed Antenna is significantly more lossy at all frequencies compared to milled and simulated antennas
 - Likely due to curing method

Conclusion and Future Work
- Conclusions
 - FR4 used has different ε_r than expected
 - Printed antenna appears very lossy, must improve in future designs
- Future Work
 - Find way to better attach connectors to printed antenna
 - Contact manufacturer/KAUST to try and reduce resistive losses for the ink used
 - Measure far field and compare it with simulation results.
- Skills Gained:
 - DMP-2850 Materials Printer operation
 - LPKF Mill operation
 - Antenna Reflection Measurements
 - Use of Antenna design software

Fabricated Antenna

References and Acknowledgements
- Acknowledgements:
 - Robert Jones, Yiming Chen, Andres Velasco
- References:
 - V. Demir and A. Elsherbeni, “Computational Electromagnetics Simulator (CEMS),” software package version 4, veysdemir@gmail.com, August 2020.