Wrist MRI Discretization Tools

for Finite-Difference Time-Domain

Solvers and Analysis

Nelson L. Angels nelsonangels@mines.edu

Special thanks to Rachel Lumnitzer rachelgottlieb@mines.edu

Antenna, RFID, and Computational EM Group

N

Overview of Contents

- 1. Research Motivation
- 2. Objectives
- 3. Previous Iterations
- 4. Procedure
- 5. MRI Protocol
- 6. Program Functionality
 - 1. User Facing
 - 2. Backend
- 7. Follow Up Work

Research Motivation

Strict electronic certification requirements driving aggressive corporate investment in FDTD simulation software

- SAR certification, causing rising overhead costs
- FDTD simulation software limited

2/1/2023

- Existing methods focused on cranial
- Electrical Nerve Stimulation for Arthritis Pain

Figure 1 Coil Demo for Leg-specific MRI Prototype

Sampaio, MD, Marcos Loreto, and Nicholas M. Kolanko, MD. MRI of the wrist. The Journal of Practical Medical Imaging and Management, October 9, 2014. https://www.appliedradiology.com/articles/mriof-the-wrist

Objectives

- 1. Develop wrist optimized program
- 2. FDTD suitable formats
- 3. Provide higher level accuracy with 2D only
- 4. Ability to process both color and grayscale
- 5. Ability to reverse discretization process

Previous Iterations

A. Elsherbeni and C.D. Taylor, Jr., "Simulation of Interaction of Electromagnetic Waves with a Human Head," Electrical Engineering Department, University of Mississippi

Muscle

Skin

2/1/2023

Procedure

• Start with actual MRI images

MRI images

2/1/2023

- (gray scale)
- Assign a grid to the image, set resolution (h value)
- Assign color by tissue
- Export into format suitable for FDTD

(MRI) [R, G, B, X, Y]

- Integrate the discretized images into the FDTD code
- Reverse the entire process

8

3 4

	2	8	6	1	5	4	9	7	3
	1	9	5	7	6	З	8	4	2
	7	4	3	2	8	9	5	1	6
	3	7	9	6	2	5	4	8	1
	8	5	1	3	4	7	6	2	9
1	4	6	2	9	1	8	7	3	5
	6	3	4	5	7	2	1	9	8
	9	1	7	8	3	6	2	5	4
	5	2	8	4	9	1	3	6	7

Figure 1. Wrist MRI (from our work). (A) Coronal section with the carpal bones in the dashed yellow box. (B) Zoomed image of the carpal bones. (C) Labeled rendered surfaces of the eight carpal bones.

5

MRI Protocol

- PD, T1 (LRT), T2 (TRT), GRE
- Fat Suppression

ARC

MRI Protocol

Increased sophistication of MRI protocol = higher degree of discretization

Table 1. MRI protocol									
Imaging plane	MRI sequence weighting	Structures optimally assessed							
Coronal	Fast spin echo T1 , PD fat sat or STIR and GRE T2*	Bones, intrinsic ligaments, TFCC							
Axial	Fast spin echo PD Fat sat and PD (or T1)	Bones, scapholunate ligament, extrinsic ligaments, peri-articular cysts, tendons and nerves							
Sagittal	Fast spin echo PD Fat sat	Bones, TFCC, extrinsic ligaments, peri-articular cysts, tendons and nerves							
PD – Proton density weighted sequence Fat sat – spectral fat saturation GRE – gradient echo									

Menu provides user several options based on MRI type

Categorization enables program to assign a different tissue assignment protocol based on categorization, increasing accuracy of discretization

2/1/2023

Program works with system OS to provide user GUI for file selections:

rganize 🔻 New folde	er						
📥 Nelson - Colora	Name	Status	Date modified	Туре	Size		
	😭 mri_discretization	۲	11/20/2022 9:58 AM	MATLAB Code	29 KB		
📰 Desktop 🔹 🖈	MRI_Wrist_PD_FS	۲	11/12/2022 10:46 PM	JPEG File	84 KB		
🛓 Downloads 🖈	MRI_Wrist_PD_FS_B	۲	11/13/2022 4:36 PM	Microsoft Excel C	440 KB		
🗧 Documents 🖈	MRI_Wrist_PD_FS_Discretized	٥	11/13/2022 4:35 PM	JPEG File	65 KB		
🔀 Pictures 🛛 🖈	MRI_Wrist_PD_FS_G	٥	11/13/2022 4:35 PM	Microsoft Excel C	450 KB		
🛅 iCloud Drive 🖈	MRI_Wrist_PD_FS_R	٥	11/13/2022 4:35 PM	Microsoft Excel C	461 KB		
🕢 Music 🔹 🖈	MRI_Wrist_PD_FS_RGB	۲	11/13/2022 4:35 PM	Microsoft Excel C	1,350 KB		
🔀 Videos 🔹 🖈	MRI_Wrist_PD_FS_RGBXY	۲	11/13/2022 6:25 PM	Microsoft Excel C	2,308 KB		
Nelson_MRI_coc	MRI_Wrist_PD_FS_XY	۲	11/13/2022 4:35 PM	Microsoft Excel C	959 KB		
Nelson_MRI_coc	MRI_Wrist_PD_FS_XYLower	۲	11/13/2022 4:35 PM	Microsoft Excel C	959 KB		
Downloads	MRI_Wrist_PD_FS_XYUpper	۲	11/13/2022 4:35 PM	Microsoft Excel C	959 KB		
	Nelson_Research 11-13-22	•	11/20/2022 10:02 AM	Microsoft PowerP	9,749 KB		
	README	۲	11/13/2022 4:36 PM	Text Document	3 KB		
This PC							

User selects MRI image from any folder

Program displays image processing montage and exports files:

2/1/2023

 \times

Results:

Entire process can be reversed in like manner

RC

CSV

Representing functions on a grid

Example physical (continuous) 2D function

Function is known only at discrete points

_		_				_	_		_
•	٠	•	٠	•	•	٠	٠	٠	•
•		٠		•	٠	•	•	٠	٠
٠	•			٠	٠	•	•	٠	•
						•	•	•	
-		•							•
٠	•	٠	٠	•	•				٠
٠	٠	٠	٠	٠	٠	٠		٠	٠
•			•	•	•	٠	•	•	٠
٠				٠	٠	٠	•	٠	٠
٠				٠	٠	•	٠	٠	٠
٠				•	٠	٠	٠	٠	٠
•			-	٠	٠	•	•	٠	٠
•	•	•		٠	•	•	٠	•	٠
•	•	٠	•	•	•	•	•	•	٠
•	•	•	•	•	•	•	•	•	•
•	•	•	•	٠	•	•	•	•	٠
•	•	•	•	•	٠	•	•	•	٠
	•			•			•		

Representation of what is actually stored in memory

2 grids assigned. 1st grid is for quantization of cell material (from previous iteration):

- Based on the desired resolution, each cell will contain several material types.
- Each material type is counted in the cell.
- The greatest occurring material will be selected as the material type for this cell.

Original area of 3 bone cells 3 fluid cells 9 air cells 1 cartilage cell

Quantized to 1 air cell

A. Elsherbeni and C.D. Taylor, Jr.,"Simulation of Interaction of Electromagnetic Waves with a Human Head," Electrical Engineering Department, University of Mississippi

2/1/2023

Tissue assignment methodology:

2/1/2023

- The ASCII pixel data are converted to integers
- The 256 levels in each pixel are interpreted as one of 6 different materials including free space.
- Each material type is considered to have an exclusive interval for a quick conversion.

A. Elsherbeni and C.D. Taylor, Jr.,"Simulation of Interaction of Electromagnetic Waves with a Human Head," Electrical Engineering Department, University of Mississippi

Tissue assignment methodology (For PD FS assignment protocol):

Tissue Type	Gray Level	Color
extracorporeal/free space	0-9	black
bone	10-49	white
muscle & tendons	50-99	Dark grey
TFCC	100-119	yellow
fat & fluids	120-229	red
pathological issue	230-255	blue


```
%% Resynthesize image based on tissue
% by assigning tissue to colors
```

```
if PD == true % image is a PD
    if fatSuppressed == true
        % Extracorporeal -> Black
        linearInd = find(grayImage>=0 & grayImage<=9);
        redChannel = grayImage;
        redChannel(linearInd) = 0;
        greenChannel = grayImage;
        greenChannel(linearInd) = 0;
        blueChannel = grayImage;
        blueChannel(linearInd) = 0;
        outImage = cat(3, redChannel, greenChannel, blueChannel);</pre>
```

```
% Muscle -> Dark Grey
linearInd = find(grayImage>=50 & grayImage<=99);
redChannel(linearInd) = 64;
greenChannel(linearInd) = 64;
blueChannel(linearInd) = 64;
outImage = cat(3, redChannel, greenChannel, blueChannel);
```


FDTD Export based on 2nd grid:

Rearange image array into format suitable for FDTD -> 8 Matrices

Pixel of an RGB image are formed from the corresponding pixel of the three component images


```
%% Rearange image array into format suitable for FDTD -> 8 Matrices contained in CSV or TXT 1. [R, G, B,
[rows, columns, numberOfColorChannels] = size(outImage);
[x, y] = meshgrid(1:columns, 1:rows);
% Extract the individual red, green, and blue color channels.
% Need to cast to double or else x and y will be clipped to 255 when we concatenate them.
if numberOfColorChannels == 1
   % Leave as gray scale.
   % Get array listing [r, g, b, x, y]. Using (:) will turn all the 2-D arrays into column vectors.
   finalImage = [outImage(:), x(:), y(:)];
else
    redChannel = double(outImage(:, :, 1));
    greenChannel = double(outImage(:, :, 2));
    blueChannel = double(outImage(:, :, 3));
   %% Get array listing [r, g, b, x, y]. Using (:) will turn all the 2-D arrays into column vectors.
   %Extract all matrices and combine 1. [R, G, B, X, Y]
   finalImage = [redChannel(:), greenChannel(:), blueChannel(:), x(:), y(:)];
   %Extract R, G, B color matrices and combine 2. [R, G, B]
   finalImageRGB = [redChannel(:), greenChannel(:), blueChannel(:)];
   %Extract X, Y coordinate matrices and combine 3. [X, Y]
   finalImageXY = [x(:), y(:)];
   %Extract X lower bound, Y lower bound coordinate matrices and combine 4. [X Lower, Y Lower]
    [i] = finalImageXY(:,1);
    [j] = finalImageXY(:,2);
   finalImageXYLower = [i, j+1];
```


Entire process can be reversed in like manner

Next Steps

• MRI Discretization Protocols to be Expanded

• Tissue assignment protocol will be further sophisticated to take advantage of deeper MRI protocols

Integration into FDTD

App?

2/1/2023

