Sub-Gridding Errors in Standard and Hybrid Higher Order FDTD Simulations

Madison Le, Atef Elsherbeni, Mohammed Hadi

madisonle@mines.edu, aelshe@mines.edu, mhadi@mines.edu
Introduction

- What is the **Finite-Difference Time-Domain Method (FDTD)**?
- What is it used for?
- Why do we need Subgridding?
Problem: Difficulties with 5G and IoT Device Design

Proposed Solution: Subgridding can be used to save memory and CPU time while maintaining an accurate solution.

https://www.ursalink.com/en/blog/5g-iot
Main Research Objectives

- The repercussions of subgridding in a FDTD calculation can lead to dispersion and stability errors [1-3].
- A larger subgrid enhances the maximum area an object of interest can be meshed to receive a more accurate analysis in a local grid. The deleterious effects of larger subgridding ratios have been discussed in the literature [4].
- A topic that has not yet been investigated, is the relative error that arises with increased electrical sizes of subgridded regions, independent of the contrast ratio.
- This research will focus on the effect the size of a subgridded region has on the resulting errors with 1:3, 1:9, 1:15, and 1:27 contrast ratios within 1D and 2D FDTD simulations.

Superimposed Coarse and Fine Grid – TMz Case

$(i_c, j_c) = $ coarse grid indices

$(i_f, j_f) = $ fine grid indices

$(l_f, l_f) = $ coarse grid relationship to beginning of fine grid

$E_{zc} = $ boundary

$H_{xc} = $ boundary

$H_{yc} = $ boundary

$e_{zf} = $ boundary

$h_{xf} = $ boundary

$h_{xf} = $ boundary

$h_{yf} = $ boundary

$I_z, J_z = $ coarse grid relationship to beginning of fine grid

$i_z, j_z = $ coarse grid indices

$i_z, j_z = $ fine grid indices
1. Update H_{xc} everywhere in the coarse grid.
2. Update h_{xf} everywhere in the fine grid using updating equation.
3. Update only boundary H_{xc} with the new value for h_{xf} at specific collocated locations.
4. Update H_{yc} everywhere in the coarse grid.
5. Update h_{yf} everywhere in the fine grid using updating equation.
6. Update only boundary H_{yc} with the new value for h_{yf} at specific collocated locations.
7. Update E_{zc} everywhere in the coarse grid.
8. Update the collocated e_{zf} with the value of E_{zc}.
9. Interpolation of non-collocated e_{zf}
10. Update non-boundary e_{zf} using fine grid magnetic fields.
11. Repeat steps 1-10 for all following time steps.
Step 9 - e_{zf}, boundary interpolation method

9. Update e_{zf} only along boundary using interpolation of E_{zc}.
 a) Corner & Edge boundaries
 i. Interpolate between two closest E_{zc} coarse nodes.
 ii. Fine grid nodes, e_{zf}, will receive 2/3 the value of the node closest (1 fine grid step away) and it will receive 2/3 of the next closest coarse node (2 fine grid steps away). Equation 1.

$$
\begin{align*}
e_{zf}^{n+1}(I_f + i_f, J_f + j_f) &= \frac{\text{fine grid steps to closest coarse node}}{3} E_{zc}^{n+1}(I_f + i_f, J_f + j_f) \\
+ \frac{\text{fine grid steps to next closest coarse node}}{3} E_{zc}^{n+1}(I_f + i_f, J_f + j_f)
\end{align*}
$$

where,

(I_f, J_f) = index for the beginning of the fine grid in terms of the coarse grid coordinates,
(i_f, j_f) = indices of fine grid component locations within the fine grid

2D Subgridding – Single Subgrid Region
Normalized Difference 2D Calculation Equation

\[Max \text{ Normalized Difference}(i, j, t) = \frac{|E_{zSubgrid}(i, j, t) - E_{zReference}(i, j, t)|_{Max}}{|E_{zReference}(i, j, t)|_{Max}} \times 100 \]

for
\[t = \text{all time} \]
\[i = [1: nx + 1] \]
\[j = [1: ny + 1] \]
Problem Space

2D Domain: 308 x 243 Coarse Cells

SUBGRID REGION:
143 x 30 Coarse Cells

<table>
<thead>
<tr>
<th>Contrast Ratio</th>
<th>Coarse Cell Size $(dx = dy)$ (mm)</th>
<th>Fine Cell Size $(dx_{fine} = dy_{fine})$ (mm)</th>
<th>Time Step Size (dt) (ps)</th>
<th>Number of Time Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:3</td>
<td>3 mm</td>
<td>1 mm</td>
<td>2.1 ps</td>
<td>3,000</td>
</tr>
<tr>
<td>1:9</td>
<td>3 mm</td>
<td>0.33 mm</td>
<td>0.7 ps</td>
<td>9,000</td>
</tr>
<tr>
<td>1:15</td>
<td>3 mm</td>
<td>0.2 mm</td>
<td>0.42 ps</td>
<td>15,000</td>
</tr>
<tr>
<td>1:27</td>
<td>3 mm</td>
<td>0.11 mm</td>
<td>0.24 ps</td>
<td>27,000</td>
</tr>
</tbody>
</table>
S22 vs. Hybrid Results (Contrast Ratio = 1:3, 1:9, 1:15, 1:27)

Maximum S22 Error: 0.62%
Maximum Hybrid Error: 0.42%

Maximum S22 Error: 0.69%
Maximum Hybrid Error: 0.15%

Maximum S22 Error: 0.70%
Maximum Hybrid Error: 0.16%

Maximum S22 Error: 0.71%
Maximum Hybrid Error: 0.18%
S22 vs. Hybrid Error Comparison

<p>| Contrast Ratio | S22 Maximum % Error (\frac{\max |E_z(i, j, t) - E_{z,\text{ref}}(i, j, t)|}{\max |E_{z,\text{ref}}(i_{\text{source}} - i_{\text{offset}}, j_{\text{source}}, t)|}) | Hybrid (S24) Maximum % Error (\frac{\max |E_z(i, j, t) - E_{z,\text{ref}}(i, j, t)|}{\max |E_{z,\text{ref}}(i_{\text{source}} - i_{\text{offset}}, j_{\text{source}}, t)|}) | Hybrid Improvement (\frac{|\text{Error}{S22} - \text{Error}{S24}|}{\text{Error}_{S22}}) |
|----------------|---|---|---------------|
| 1:3 | 0.6168 % | 0.4202 % | 32 % |
| 1:9 | 0.6971 % | 0.1803 % | 74 % |
| 1:15 | 0.7036 % | 0.1614 % | 77 % |
| 1:27 | 0.7061 % | 0.1550 % | 78 % |</p>
<table>
<thead>
<tr>
<th>Contrast Ratio</th>
<th>Reference</th>
<th>S22</th>
<th>Hybrid</th>
<th>Hybrid Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Time</td>
<td></td>
<td>Total Time</td>
<td>Total Time</td>
</tr>
<tr>
<td>1:3</td>
<td>0.331</td>
<td>0.050</td>
<td>0.054</td>
<td>83.69%</td>
</tr>
<tr>
<td>1:9</td>
<td>7.780</td>
<td>0.326</td>
<td>0.316</td>
<td>95.94%</td>
</tr>
<tr>
<td>1:15</td>
<td>34.658</td>
<td>1.371</td>
<td>1.373</td>
<td>96.04%</td>
</tr>
<tr>
<td>1:27</td>
<td>3052.957</td>
<td>491.586</td>
<td>495.241</td>
<td>83.78%</td>
</tr>
</tbody>
</table>

All simulations were run using MATLAB R2018a software on a 64-bit Intel® Xeon® CPU E5-2680 0 at 2.70 GHz, 2.70 GHz (2 processors) with 256 GB of RAM.
Memory Usage Breakdown

<table>
<thead>
<tr>
<th>Contrast Ratio</th>
<th>Memory (GB)</th>
<th>Hybrid Improvement</th>
<th>Memory Saved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reference</td>
<td>S22</td>
<td>Hybrid</td>
</tr>
<tr>
<td>1:3</td>
<td>2.371</td>
<td>2.154</td>
<td>2.156</td>
</tr>
<tr>
<td>1:9</td>
<td>4.294</td>
<td>2.230</td>
<td>2.232</td>
</tr>
<tr>
<td>1:15</td>
<td>17.055</td>
<td>2.327</td>
<td>2.327</td>
</tr>
<tr>
<td>1:27</td>
<td>21.192</td>
<td>2.581</td>
<td>2.543</td>
</tr>
</tbody>
</table>

All simulations were run using MATLAB R2018a software on a 64-bit Intel® Xeon® CPU E5-2680 0 at 2.70 GHz, 2.70 GHz (2 processors) with 256 GB of RAM.
2D Subgridding – Multiple Subgrid Regions
Hybrid FDTD Problem Space & Results

2D Domain: 319 x 388 Coarse Cells

Coarse Grid

Subgrid CR=3

Subgrid CR=9

Subgrid CR=3

Gaussian Source

PML—10 Coarse Cells

Cells along y

Cells along x

Normalized % Error

ELECTRICAL ENGINEERING
COLORADO SCHOOL OF MINES
Achievements:

- Acceptable levels of error in the S22 and Hybrid domains.
- Acceptable levels of error with higher contrast ratios, up to 27.
- Significant speedup in CPU time utilizing subgridding methods.
- Significant reduction in memory usage.
- Successful implementation of multiple subgrid regions in a 2D domain.

Future Work:

- Integrating subgridding in a 3D computational domain to begin testing on realistic scenarios such as filter and antenna array problems.
- Implementing a hybrid 4th and 2nd order FDTD calculation of the electric and magnetic fields to increase accuracy of the simulations in the coarse domain.
- Subgrid Regions with higher contrast ratios, 30, 90, etc.
Publications

Achievements: ACES 2019 Student Paper Competition 3rd Place Winner, 2019 ACES Conference, Miami, FL.
Questions?

madisonle@mines.edu
Electrical Engineering Department,
Colorado School of Mines, Golden, CO 80401, USA
http://ee-arc.mines.edu
FDTD Subgridding References

• References: