Simulation of a Nonlinear Frequency Multiplier using the FDTD Technique

Joshua M. Kast and Atef Z. Elsherbeni

jkast@mines.edu aelsherb@mines.edu
Introduction

- Common RF devices, such as mixers and detectors, employ nonlinear components to function.
- Increasingly, nonlinear effects are employed to improve energy efficiency and thermal properties of modern amplifiers.
- Simulation is challenging with nonlinear devices – frequency-domain approaches break down.
- Goal: use nonlinear lumped-element devices integrated in FDTD grid to demonstrate nonlinear effects relevant to RF communications.
Linear devices include resistors, inductors, capacitors.

Nonlinear behavior occurs in diodes, transistors, and ferrites.
Introduction - Nonlinearity

- Linear devices include resistors, inductors, capacitors.
- Nonlinear behavior occurs in diodes, transistors, and ferrites.
- Example: resistor and diode
 - I/V characteristic for resistor is defined by Ohm’s law:

\[I = \frac{V}{R} \]

Linear Equation
Introduction - Nonlinearity

- Linear devices include resistors, inductors, capacitors.
- Nonlinear behavior occurs in diodes, transistors, and ferrites.
- Example: resistor and diode
 - I/V characteristic for resistor is defined by Ohm’s law:
 \[I = \frac{V}{R} \]
 - I/V characteristic for diode is defined by an exponential function:
 \[I_D = I_S \left(e^{\frac{V_D}{\eta V_T}} - 1 \right) \]
Introduction - Nonlinearity

- Linear devices include resistors, inductors, capacitors.
- Nonlinear behavior occurs in diodes, transistors, and ferrites.
- Example: resistor and diode
 - I/V characteristic for resistor is defined by Ohm’s law:
 \[I = \frac{V}{R} \]
 - I/V characteristic for diode is defined by an exponential function:
 \[I_D = I_S \left(e^{\frac{V_D}{\eta V_T}} - 1 \right) \]

\[\begin{array}{c|c|c}
\text{Voltage (V)} & -2 & -1.5 \\
\text{Current (A)} & -2 & -1.5 \\
\end{array} \]

Resistor
\[1 \Omega \]

Ideal Diode

Nonlinearity

Exponential Equation
Example: Excite a diode with a sinusoidal voltage source, measure current.

\[V_D(t) = a \cos(\omega t) \]

Substitute \(I_D = I_S \left[e^{\frac{V_D}{\eta V_T}} - 1 \right] \)

\[I_D(t) = I_S \left[e^{\frac{a \cos(\omega t)}{\eta V_T}} - 1 \right] \]
Example: Excite a diode with a sinusoidal voltage source, measure current.

\[V_D(t) = a \cos(\omega t) \]

Substitute \(I_D = I_S \left[e^{\frac{V_D}{\eta V_T}} - 1 \right] \)

\[I_D(t) = I_S \left[e^{\frac{a \cos(\omega t)}{\eta V_T}} - 1 \right] \]

Replace exponential by Maclaurin series:

\[I_D(t) = I_S \sum_{n=1}^{\infty} \frac{(a \cos(\omega t))^n}{n!} \]

Take first three terms:

\[I_D(t) \approx I_S \left(\frac{a \cos(\omega t)}{\eta V_T} + \frac{a^2 (\cos(2\omega t) + 1)}{4\eta^2 V_T^2} + \frac{a^3 (\cos(3\omega t) - 3 \cos(\omega t))}{24\eta^3 V_T^3} \right) \]
Diode With Series Resistor

- **FDTD Domain:** 40 x 38 x 43 (65360) cells
 - CPML Boundaries – 10 cells with 8 cell air-buffer
 - Cell size - \(dx = dy = dz = 0.05\) mm
- **Excitation:** 10 V\(_{pp}\), 5 GHz sinusoidal

\[R = 50\Omega\]
Diode With Series Resistor: Time-Domain Results

\[R = 50 \Omega \]

\[R_S = 50 \Omega \]

\[I \]

\[V \]

The graph shows the source voltage and the voltage across the resistor for FDTD and ADS simulations. The plots are labeled as:
- Source Voltage
- Voltage Across Resistor (FDTD)
- Voltage Across Resistor (ADS)
Diode With Series Resistor: Frequency Domain Results

\[R = 50 \Omega \]

\[R_S = 50 \Omega \]

- Voltage Source
- Voltage Across Resistor (FDTD)
- Voltage Across Resistor (ADS)
Diode with Low Pass Filter

Voltage Source (Port 1)

\[f = 5 \text{ GHz} \]
\[V_s = 3 \text{ Vpp} \]
\[R_s = 50\Omega \]

Low-pass Filter

\[C_1 = 1.044 \text{ pF} \]
\[L_1 = 1.882 \text{ nH} \]
\[C_2 = 1.555 \text{ pF} \]

Diode

Load (Port 2)

\[R = 50\Omega \]
Diode with Low Pass Filter

Voltage Source (Port 1) Low-pass Filter Diode Load (Port 2)

\(f = 5 \text{ GHz} \)
\(V_s = 3 \text{ Vpp} \)
\(R_s = 50 \Omega \)

\(C_1 = 1.044 \text{ pF} \)
\(L_1 = 1.882 \text{ nH} \)
\(C_2 = 1.555 \text{ pF} \)

\(R = 50 \Omega \)
Conclusions and Future Work

- FDTD provides useful simulations of nonlinear components integrated in microwave circuits.
- Future work: analyze the results using the nonlinear X-parameters.
References

