ARC Group Poster: Yiming Chen

Yiming Chen Atef Elsherbeni

yimingchen@mines.edu

aelsherb@mines.edu

Last update: 08/23/2023

Outline

- Project 1: Cavity Backed Patch Antenna Design
 - <u>Arrow Patch-Slot Antenna for 5G Lower Frequency Band Communications</u>
 - <u>Cavity Backed Patch-Slot Antenna for Lower Band 5G Communications</u>
- Project 2: 3D Antenna: Maximizing Isotropicity and CP Coverage
 - <u>3D antenna in package design: Maximizing radiation pattern isotropicity and CP coverage</u>
 - <u>Antenna-on-package design: Achieving near-isotropic radiation pattern and wide CP coverage simultaneously</u>
- Project 3: RFID Tag Antenna Design
 - <u>Circularly polarized RFID tag antenna design for underground localization system</u>
 - <u>Underground localization system using a combination of RFID and IMU technologies</u>
- Project 4: Human Tissues Properties in Antenna Design
 - Human tissues parameters and resolution for accurate simulations of wearable antennas
 - <u>A Dual-Band Microstrip Patch Antenna for 5G Mobile Communications</u>
 - <u>A Dual-Band and Low-Cost Microstrip Patch Antenna for 5G Mobile Communications</u>
- Project 5: Antenna Design based on Data-Informed Machine Learning (in process)
 - Machine Learning for Microstrip Patch Antenna Design: Observations and Recommendations
 - <u>Machine Learning Design of Printed Patch Antenna</u>
 - TBD...
- Project 6: Array Radiation Pattern Optimization in Near and Far Field (in process)
 - <u>An Efficient Transmitarray Element using Diagonal Double-Headed Arrows with Vias</u>
 - TBD...

Project 1: Cavity Backed Patch Antenna Design

- 1. Feng, Yuhao, Yiming Chen, Atef Z. Elsherbeni, and Khalid Alharbi. "Arrow Patch-Slot Antenna for 5G Lower Frequency Band Communications." In 2020 International Applied Computational Electromagnetics Society Symposium (ACES), pp. 1-2. IEEE, 2020.
- Chen, Yiming, Atef Z. Elsherbeni, Khalid Alharbi, and Rabah Aldhaheri. "Cavity backed patch-slot antenna for lower band 5G communications." In 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, pp. 1-3. IEEE, 2020.

8/15/2023

Single Antenna Element Structure

• (c) Cross section in xz plane

8/15/2023

- The frequency range of the proposed antenna covers two 5G band: 3.55-3.7 GHz (unlicensed band) and 3.7-4.2 GHz (licensed band).
- These bands are announced by Federal Communications Commission (FCC) in 2018 as the 5G commercial bands for US.

Simulated Results

Reflection coefficient

• -10 dB bandwidth: 3.38 GHz to 4.35 GHz

3D far-field gain pattern at 3.95 GHz

- Main beam: 5.68 dB
- Back beam: -4.27 dB

1×5 Linear array

ELECTRICAL ENGINEERING

COLORADO SCHOOL OF MINES

-Port 2

8/15/2023

1×15 Linear Array Simulated Results

0 -10 -20 **Reflection Coefficients (dB)** -30 Simulated S 18 Simulated S 28 -40 Simulated S 38 Simulated S -50 Simulated S 58 -60 Simulated S 68 Simulated S -70 78 Simulated S -80 2.5 3.5 4.5 5.5 3 2 5 Frequency (GHz)

Reflection coefficient

The -10 dB bandwidth: 3.46 GHz to 4.51 GHz

3D far-field gain pattern at 3.95 GHz

- With ground:
 - Main beam (19.28 dB); Back beam (-2.51 dB)
- Without ground:
 - Main beam (16.69 dB); Back beam (8.87 dB)

Planar Array Simulated Results

8/15/2023

COLORADO SCHOOL OF MINES

Further Work

- Better radiation performance for 1x15 linear array with additional ground.
- Fabrication and chamber measurement will be our next task.
- Two-dimensional planar array will be used to generate pencil shaped beam.
- Phase optimized excitation will be investigated for beam scanning.

8/15/2023

Project 2: 3D Antenna: Maximizing Isotropicity and CP Coverage

- 1. Su, Zhen, Kirill Klionovski, Hanguang Liao, Atif Shamim, Y. Chen, and A. Elsherbeni. "3D antenna in package design: Maximizing radiation pattern isotropicity and CP coverage." In 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, pp. 263-264. IEEE, 2020.
- 2. Su, Zhen, Kirill Klionovski, Hanguang Liao, Yiming Chen, Atef Z. Elsherbeni, and Atif Shamim. "Antenna-on-package design: Achieving near-isotropic radiation pattern and wide CP coverage simultaneously." IEEE Transactions on Antennas and Propagation 69, no. 7 (2020): 3740-3749.

Performance

Fabrication

(c) Fig. 13. (a). Fabricated six roger board with metallic patterns for antenna and phase shifter. (b). The glued antenna on package (c).The antenna on package with bazooka balun

8/15/2023

The -10 dB bandwidth: 1.34 GHz to 1.81 GHz

Isotropicity and CP Coverage

(a) (b) Fig. 15. (a). The radiation pattern measurement setup in Satimo Chamber (b). the 3D radiation pattern.

Table I. Comparison between simulated and measured results

	7dB isotropy	CP coverage
Simulation	94.01%	17.3%
Measurement	92.86%	17.2%

11

Project 3: RFID Tag Antenna Design

1. Chen, Yiming, and Atef Z. Elsherbeni. "Circularly polarized RFID tag antenna design for underground localization system." In 2021 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), pp. 205-206. IEEE, 2021.

Performance

Impedance Matching

Fig. 2. Simulated S₁₁ for the CP tag antenna with and without extended metal plate.

Radiation Performance

Fig. 3. Simulated axial ratio for the CP tag antenna with and without extended metal plate.

Fig. 4. Simulated gain for the CP tag antenna with and without extended metal plate.

Properties for the Read Range Calculation

Read Range for Tag with 20cm*20cm Metal Plate: Phi=(0,2pi)

- Read range comparison
- At 915 MHz
- Phi varies from 0 to 2π for all cases
- Different Theta:
 - 0°
 - 30°
 - 45°
 - 60°

Dimension Tuning for Tag with Different Metal Plates

Properties	Tag with 7*7 cm ² Metal Plate	Tag with 10*10 cm ² Metal Plate (Before Optimization)	Tag with 20*20 cm ² Metal Plate (Before Optimization)	Tag with 20*20 cm ² Metal Plate (After Optimization)
S11 at 915 MHz	-17.7 dB	-16.7 dB	-17.7 dB	-27.5 dB
S11 -10 dB Bandwidth	902-939 MHz	903-939 MHz	904-940 MHz	890-926 MHz
AR at 915 MHz	1.26 dB	4.07 dB	3.38 dB	0.4 dB
AR 3 dB Bandwidth	913.2-919 MHz	916.3-923.1 MHz	915.5-922.1 MHz	911.4-917.8 MHz
Far-Field Gain at 915 MHz	-15.95 dB	-9.5 dB	-9.09 dB	-9.24 dB
Read Range	1.2 m	2.49 m	2.64 m	2.75 m

Project 4: Human Tissues Properties in Antenna Design

1. Chen, Yiming, Fatih Kaburcuk, Rachel Lumnitzer, Atef Z. Elsherbeni, Veysel Demir, and Atif Shamim. "Human tissues parameters and resolution for accurate simulations of wearable antennas." In 2021 International Applied Computational Electromagnetics Society Symposium (ACES), pp. 1-4. IEEE, 2021.

Performance Comparison: CEMS and CST

Impedance Matching

Fig. 3. S_{11} comparisons of the original and re-tuned antenna in free-space and on the wrist using CEMS and CST.

Radiation Performance

Fig. 4. Relative gain comparisons at 2.4 GHz of the original antenna in free space and on the wrist using CEMS and CST in: (a) x-z plane; (b) y-z plane.

Fig. 5. Relative gain comparisons at 5.8 GHz of the original antenna in free space and on the wrist using CEMS and CST in: (a) *x-z* plane; (b) *y-z* plane.

Comparison of Max Gain of the Antenna Obtained Using CEMS and CST

Gain (dB)		At 2.4 GHz		At 5.8 GHz		3D Max Gain (dB)		
		E plane	H Plane	E plane	H Plane	2.4 GHz	5.8 GHz	
	original	in free space	1.88	1.91	4.40	4.33	1.95	4.40
CEMS	antenna	on wrist	-4.02	-4.02	-3.61	-3.90	-4.01	-3.02
	re-tuned	in free space	2.98	2.76	4.55	5.27	3.01	5.66
anteni	antenna	on wrist	-3.01	-3.04	4.36	3.72	-3.01	4.40
	original	in free space	1.87	1.91	4.42	4.39	1.94	4.42
	antenna	on wrist	-4.36	-4.43	4.16	3.44	-4.32	4.43
	re-tuned antenna	in free space	2.56	2.50	5.71	6.13	2.58	6.28
		on wrist	-2.17	-2.17	6.79	6.39	-2.17	6.83

Please note that the gain is for the max

ELECTRICAL ENGINEERING, not the gain at theta=0, phi=0.

Comparison of S11 of the Antenna Obtained Using CEMS and CST

S11 (dB)			At 2.4 GHz	At 5.8 GHz	3D Max Gain (dB)	
					2.4 GHz	5.8 GHz
	original	in free space	-19.5478	-25.5239	1.95	4.40
CEMS	antenna	on wrist	-10.8379	-6.0991	-4.01	-3.02
re ar	re-tuned antenna	in free space	-3.9675	-11.2481	3.01	5.66
		on wrist	-18.8529	-15.6908	-3.01	4.40
	original	in free space	-19.334	-28.599	1.94	4.42
CST	antenna	on wrist	-6.3245	-7.0096	-4.32	4.43
re-tuned antenna	re-tuned	in free space	-8.691	-8.6486	2.58	6.28
	on wrist	-21.517	-8.4886	-2.17	6.83	

Material Conductivity

CST

- Denim: Lossless;
- Human Tissue: Corresponding electrical conductivity calculated by Macro.

However, if CEMS uses lossless properties for the human tissue, the gain should be high. The current situation is that CST has higher gain.

CEMS

X

- Denim: Lossless;
- Human Tissue: Zero conductivity.

Project 5: Antenna Design based on Data-Informed Machine Learning

- Chen, Yiming, Atef Z. Elsherbeni, and Veysel Demir. "Machine learning for microstrip patch antenna design: Observations and recommendations." In 2022 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), pp. 256-257. IEEE, 2022.
- 2. Chen, Yiming, Atef Z. Elsherbeni, and Veysel Demir. "Machine Learning Design of Printed Patch Antenna." In 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), pp. 201-202. IEEE, 2022.
- 3. TBD...

Traditional Antenna Integration Process

8/15/2023

Thermal Issue

- Desense Issue
 - Degradation in sensitivity due to noise source
- Resonance shift
- Polarization Discrimination
- Radiation Degradation
- EM Interference (EMI)
- EM Compatibility (EMC)

ML Improved Integration Process

Simulation

ML Prediction

Antenna Model Complexity

Resource Consumption

Design Goals:

- Work at 2.4 and 5 GHz
- Low cost
- Space limitation: W, L, H
- Antenna gain: 5 dB

For Single Antenna Model:

- Simulation: Time and resource consuming increase with the model complexity.
- Prediction: almost real-time
- However, ML training process take lots of resources.

Motivation

- Well-trained models are used to predict the **reflection coefficient** (S_{11}) of antenna:
 - Reflection coefficient is one of the most important metrics to evaluate the antenna performance
 - Other metrics will be involved in the future work, like gain, polarization, radiation efficiency ...
- All proposed ML models are data-driven, so they are called Data-Informed Machine Learning methods (DIMLs)
- Automatic dataset generation methods proposed in this presentation can be used on other workflows.
- The well-trained models can be integrated in the largescale model.
- DIML is a necessary step for Physics-Informed Machine Learning methods (PIMLs)

Datasets Comparison

 $W_{s} \leftarrow W_{s} \leftarrow W_{s$

		1-D Dataset	2-D Dataset	3-D Dataset
	Format	Feature List	One Image	Two Images
Input	Details	(<i>L</i> , <i>W</i> , <i>W</i> _{TL} , <i>h</i> , ε _r)		
	Format	(Class, RF)	A list	A list
Output	Details	(Binary classification, Regression for 1 st resonance)	S11 in a frequency range	S11 in a frequency range

General Workflows

1-D Workflow

• The **Definition** of 'Resonant Frequency':

- The 1st minimum value below -10 dB reflect coefficients (S₁₁) in the frequency band.
- CEMS-Python Interface for the **parameter sweep** as the automatic process of dataset generation.
- **20 Users** are selected randomly for the final evaluation of well-trained models.
- 80/20 splitting is applied on SVC and SVR models for train/test sets.
- Binary Classification:
 - Have valid resonance: class 1
 - No valid resonance: class 0

ELECTRICAL ENGINEERING

COLORADO SCHOOL OF MINES

- Regression:
 - Predicted resonant frequency for the predicted class 1

1-D Workflow: SVM Models

X2

1-D Workflow: Results

- The hyperparameters for SVC and SVR are optimized using 5-fold 3-repeated cross validation.
- Testing for SVC model with 4092 samples:
 - Acc score: 0.967
 - *F*₁ score: 0.979
- Testing for SVR model with 3195 samples:
 - *R*² score: 0.926
 - RMSE loss: 0.610
- The evaluation of the well-trained models are presented based on 20 users, which are shown on the right.

	Simul	ation	SVC		SVR for RF (GHz)	
User ID	RF (GHz)	BW (MHz)	True	Predict	Predict	r _E
1	4.14	40	1	1	4.23	2.15%
2	5.00	60	1	1	5.11	2.16%
3	6.04	20	1	1	6.85	13.41%
4	7.04	540	1	1	6.72	4.53%
5	8.02	540	1	1	8.05	0.43%
6	9.06	180	1	1	9.09	0.29%
7	10.02	880	1	1	9.89	1.35%
8	11.04	140	1	1	10.63	3.69%
9	11.98	140	1	1	11.73	2.07%
10	12.9	380	1	1	12.92	0.19%
11	14.02	360	1	1	13.80	1.59%
12	4.14	0	0	1	5.03	21.47%
13	8.14	0	0	1	6.81	16.77%
14	0	0	0	0	Nan	Nan
15	0	0	0	0	Nan	Nan
16	0	0	0	0	Nan	Nan
17	13.82	Inf	0	0	Nan	Nan
18	14.58	Inf	0	0	Nan	Nan
19	Inf	Inf	0	0	Nan	Nan
20	Inf	Inf	0	0	Nan	Nan

$$r_{E} = \left| \frac{RF_{x} - RF_{simulation}}{RF_{simulation}} \right| \times 100\%$$

Following Improvement:

- User 3: Local optimization for SVR around 6 GHz
- User 12-13: Multiple classification for different groups in Class 0

3-D Workflow

8/15/2023

3-D Workflow

	column 1	column 2	column 3	column 4	column 5	column 6
1		[R, G, B]	Color_Name	Material	Encoded_Values_[0,1]	Groups
2		[255, 255, 255]	White	Background	0.0	Fixed [0.0, 0.2]
3		[255, 102, 102]	Red	Port	0.2	Fixed [0.0, 0.2]
4	2	[229, 165, 102]	Brown	Rogers 4003C (lossy)	0.4	Dielectric [0.3, 0.7]
5		[102, 102, 102]	Gray	Fr4 (lossy)	0.5	Dielectric [0.3, 0.7]
6	4	[255, 255, 102]	Yellow	Copper (lossy)	0.95	Metal [0.8, 1.0]

3-D Workflow: Test Results

Name	Input Shape	Output Shape
Train Set	(5100, 2, 600, 600)	(5100, 701)
Test Set	(1000, 2, 600, 600)	(1000, 701)
Evaluation Set	(44, 2, 600, 600)	(44, 701)

- HPC Configuration
 - CPU: Intel Xeon Platinum 8174 @ 3.1 GHz
 - GPU: Nvidia Tesla V100 32GB
- Time Consuming

	Single GPU
Each Epoch	5.82 mins
100 Epochs	10.25 hours

Performance Metrics

Final Performance on Train and Test:

- Train L2 loss: 0.1008
- Test L2 loss: 0.1322
- Train R2 Score: 0.9299
- Test R2 Score: 0.8751

3-D Workflow: Evaluation Results

Prediction out of Range

Not Acceptable Prediction

Suffer from: Fringing Effect

Conclusion and Future Work

Achieved:

- Real-time prediction for antenna's reflection coefficients
- Automated dataset generation methods
- Completed templates for the whole workflow related to the ML based antenna design
- What we want to achieve in the future:
 - Parameterize the negative impact from integration
 - Involve more antenna types
 - Involve more performance as outputs
 - Multi-GPU support for train/test workflow

Project 6: Array Radiation Pattern Optimization in Near and Far Field

- 1. Kiris, Orcun, Atef Z. Elsherbeni, and Yiming Chen. "An Efficient Transmitarray Element using Diagonal Double-Headed Arrows with Vias." In 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), pp. 195-196. IEEE, 2022.
- 2. TBD...

8/15/2023

Transmitarray Unit Cell Design

Configuration

Fig. 1. The proposed element: (a) top and bottom view, (b) side view.

8/15/2023

Transmitted Response: Periodic Boundary

Fig. 2. Transmission and phase performance of the proposed element.

Metasurface Array for Different Scenarios

Focusing Gain between FF TA and NF TA

Questions?

Electrical Engineering Department, Colorado School of Mines, Golden, CO 80401, USA http://ee-arc.mines.edu

